

Extraction of *Asparagus Racemosus* and its Performance along with Antibiotics for Antimicrobial activities

MADHU PATEL¹, VIPUL PRAJAPATI², JIGAR S. PATEL² DR.PIYUSH VYAS²

¹Navsari Agriculture University, Athvw Farm, Surat- 395007, Gujarat

²Sheth M.N Science College, Patan-384265, Gujarat, India

Abstract:

Various diseases are caused by different pathogenic microorganisms. Antibiotics are used for treatment of infectious diseases, but indiscriminate use of it leads development of resistant microbes. It is required to find new ways to fight against diseases causing microbes. One of them is therapy of plant extract with antibiotics and this may be effective for treatment of various diseases. This study has been carried out to evaluate interaction of methanol extract of ASPARAGUS RACEMOSUS with different antibiotics against bacteria and fungi.

Key words: ASPARAGUS RACEMOSUS, antibiotics, antibacterial, antifungal.

1. INTRODUCTION

In India, Ayurveda medicine has used many herbs such as turmeric possibly as early as 4,000 BC.^{1,2}Earliest Sanskrit writings such as the Rig Veda, and Atharva Veda are some of the earliest available documents detailing the medical knowledge that formed the basis of the Ayurveda system.³ Many other herbs and minerals used in Ayurveda were later described by ancient Indian herbalists such as Charaka and Sushruta during the 1st millennium BC. The *Sushruta Samhita* attributed to Sushruta in the 6th century BC describes 700 medicinal plants, 64 preparations from mineral sources, and 57 preparations based on animal sources.⁴

Ayurveda (Sanskrit: आयुर्वेद, *Āyurveda*, "life-knowledge"⁵ Ayurveda medicine, is a system of medicine with historical roots in the Indian subcontinent.⁶ Globalized and modernized practices derived from Ayurveda traditions are a type of complementary or alternative medicine.^{7,8} In the Western world, Ayurveda therapies and practices (which are manifold) have been integrated in general wellness applications and as well in some cases in medical use.⁹

Asparagus racemosus (satavar, shatavari, or shatamull) is a species of asparagus common throughout Nepal, Sri Lanka, India and the Himalayas. It grows one to two metres tall and prefers to

25 Online International, Refereed, Impact factor & Indexed Monthly Journal www.raijmr.com RET Academy for International Journals of Multidisciplinary Research (RAIJMR) take root in gravelly, rocky soils high up in piedmont plains, at 1,300–1,400 metres elevation.¹⁰ It was botanically described in 1799. Because of its multiple uses, the demand for *Asparagus racemosus* is constantly on the rise. Because of destructive harvesting, combined with habitat destruction, and deforestation, the plant is now considered "endangered" in its natural habitat.

Asparagus racemosus (Shatavari) is recommended in Ayurvedic texts for the prevention and treatment of gastric ulcers and dyspepsia, and as a galactogogue. *A. racemosus* has also been used by some Ayurvedic practitioners for nervous disorders.¹¹A few recent reports demonstrated some additional beneficial effects of this herb including antihepatotoxic, immunomodulatory, immunoadjuvant and antilithiatic effects.¹²

Shatawari has different names in the different Indian languages, such as shatuli, vrishya and other terms. In Nepal it is called kurilo. The name "shatawari" means "curer of a hundred diseases" (shatum: "hundred"; vari: "curer").

Plant taxonomy¹³

Kingdom:	<u>Plantae</u>
Clade:	Angiosperms
Clade:	<u>Monocots</u>
Order:	Asparagales
Family:	Asparagaceae
Subfamily:	Asparagoideae
Genus:	<u>Asparagus</u>
Species:	A. racemosus

Chemical properties

<u>Asparagamine A</u>, a <u>polycyclic</u> <u>alkaloid</u> was isolated from the dried roots^{14,15} and subsequently synthesized to allow for the construction of analogs.¹⁶

Two new <u>steroidal saponins</u>, <u>shatavaroside A</u> and <u>shatavaroside B</u> together with a known saponin, <u>filiasparoside C</u>, were isolated from the roots of *Asparagus racemosus*.¹⁷

Five steroidal saponins, shatavarins VI-X, together with five known saponins, shatavarin I (or asparoside B), shatavarin IV (or asparinin B), shatavarin V, immunoside and schidigerasaponin D5 (or asparanin A), have been isolated from the roots of *Asparagus racemosus*.¹⁸

2. METHODOLOGY

Asparagus racemosus is extracted by using soxhlet extraction. Here different solvents like acetone, methanol and ethanol used. These extracts are combined with different Antibiotics and their combinations were applied for zone of inhibition test against different microorganism.

Antimicrobial Activity :

Antimicrobial activity and antifungal activity of plant extract alone, antibiotics alone and combination of both was carried out by a well diffusion method. In vitro antibacterial activity of the crude extracts was studied by the agar well diffusion method. After getting the turbidity equal to 0.5 McFarland standards, inoculums were aseptically introduced on to the surface of sterile agar plates and sterilized cotton swabs were used for even distribution of the inoculums. Wells were prepared in the agar plates using a sterile cork borer of 10.0 mm diameter. The plant extract and antibiotic drug were dissolved in DMSO to get desired concentration. The wells were filled with plant extract 25μ l, 50μ l and antibiotic drug (100μ l). The plates are incubated at 37° Cfor 48 hours and then zone of inhibition was measured. In case of combination of plant extract and antibiotic, equal volume of each was added in the well and zone of inhibition was measured. The experiment was replicated two times. (Zone of Inhibition = \pm 1mm)

Qualitative Phytochemical Analysis

Preliminary qualitative analysis of all plant extract was carried out as per standard methods as follows.

1. Test for alkaloids

Extracts were dissolved in dil.HCl and filtered.

- **A. Dragendroff's Test:** Filtrate was treated with Dragendroff's reagent (Potassium Bismuth Iodide solution). Formation of red precipitate indicates the presence of alkaloids.
- **B. Wagner's Test:** Filtrate was treated with Wagner's reagent (Iodine in Potassium Iodide). Formation of brown/reddish precipitate indicates the presence of alkaloids.

2. Test for flavonoids

A. Lead acetate Test:

Extract was treated with 10% lead acetate solution. Yellow colour precipitate formation indicates the presence of flavonoids.

B. Test with Sodium hydroxide:

Extract was treated with few drops of NaOH solution. The yellow colour indicates the presence of flavonoids.

3. Test for Glycosides

A. Keller-Kiiani Test:

Add glacial acetic acid, one drop 5% FeCl3 and conc. H2SO4 to the extract. Formation of reddish brown color at junction of the two liquid layers and bluish green at upper layer indicates the presence of glycosides.

B. Legal Test:

On treatment of Extracts with sodium nitropruside in pyridine and sodium hydroxide, observed pink to blood red colour that indicates the presence of cardiac glycosides.

4. Test for Phenolics

Test with Ferric Chloride:

Extract was treated with few drops of ferric chloride solution and formed bluish black colour indicates the presence of phenols.

5 Test for Saponins

Froth Test:

The extract was diluted with 20 ml of distilled water and then shaken in a graduated cylinder for 15 minutes. Formation of 1 cm layer of foam indicates the presence of saponins.

6. Test for Tannins

Test with Ferric Chloride:

Extract was boiled with water and filtered it. Added FeCl3 to the filtrate and formation of brownish green or a blue-black coloration indicates the presence of tannins.

7. Test for Terpenoids

Salkowski Test: To the extract, added 2ml chloroform and 3ml Conc.H₂SO₄ by the wall of test tube carefully. Formation reddish brown colour at interface indicates the presence of terpenoids.

3 **Results and Discussion of** *Asparagus Racemosus*

A Qualitative phytochemical analysis of *Asparagus Racemosus*

Name of	Test	Acetone	Ethanol	Methanol
Phytochemical		Extract	Extract	Extract
Alkaloids	Dragondrorff's test			
	Wagner's test			
Tannins	With FeCl ₃	+	++	++
Saponins	Froth Test	+	+	+
Glycosides	Killer- kiiani Test			
	Legal Test			
Flavonoids	Lead acetate	+	+	+
	With NaOH	+	+	++
Terpinoids	Salkowski Test			+
Phenolics	With FeCl ₃	+	+	+

- --- = No Presence
- + = Less Presence
- ++ = Medium Presence
- +++ = Complete Presence

Antimicrobial activity of Asparagus Racemosus and its combination with antibiotics for 25µl.

Bacteria	Acetor	ne extr	act		Ethar	nol exti	ract		Methanol extract				
	Conce	ntratio	n (µg/	ml)									
	1000 500 250 125 1000 500 250 125 1000 500 250 12												
	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	
S. aureus	12	11	10	9	14	13	11	9	17	15	12	9	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
B. subtilis	11	10	9	8	12	11	10	9	15	13	11	8	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
Pseudo	15	14	13	11	18	16	15	14	19	17	16	15	
Aeruginosa	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
E. coli	17	16	15	14	18	17	16	15	19	18	17	16	
	mm										mm	mm	

Table 1 shows antibacterial activity of *Asparagus Racemosus* extract for 25 µl.

Table 2 shows antibacterial activity of combination of of *Asparagus Racemosus* extract and amoxicilline for 25 μl.

Bacteria	Amox	Acetor	ne extr	act		Ethano	ol extra	act		Methan	ol extra	act		
		+				+				+				
		Amox	icilline	•		Amox	icilline	;		Amoxicilline				
		Conce	oncentration (µg/ml)											
		1000	500	250	125	1000	500	250	125	1000	500	250	125	
	100 µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	
S. aureus	31 mm	37	36	35	34	39	38	36	35	38	37	36	35	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
B. subtilis	35 mm	43	42	40	38	43	42	40	39	43	42	40	39	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
Pseudo	2 mm	33	32	30	28	35	33	32	29	35	33	31	29	
Aeruginosa		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
E. coli	2 mm	29	28	26	24	29	27	26	24	32	30	28	25	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	

Table 3 shows antibacterial activity of combination of *Asparagus Racemosus* extract with Ciprofloxacin for 25 μl.

Bacteria	Cipro µg/ml	Aceto	ne extr	ract + C	Cipro.	Ethano Cipro.		xtract	+	Methanol extract + Cipro.			
		Conce	entratic	on (μg	/ml)								
		1000	500	250	125	1000	500	250	125	1000	500	250	125
	25 µl	25µ1	25µl	25µl	25µl	25µl	25µ1	25µ1	25µl	25µl	25µ1	25µ1	25µ1
S. aureus	24	33	33	32	31	36	35	33	32	36	35	34	32
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
B. subtilis	29	36	35	34	33	38	37	36	35	38	37	36	35
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
Pseudo	27	33	32	31	30	34	33	32	31	33	32	31	30
Aeruginos	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
а													
E. coli	27	35	34	32	30	35	33	31	30	35	34	33	31
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm

Table 4 shows antibacterial activity of combination of Asparagus Racemosus extract with Ceftadizime for 25 μ l.

Bacteria	Cefta	Ac	Acetone extract				hanol	extract		Meth	nanol e	extract	
	μg/ml		+				+			+			
			Cef	ta			Cefta				Cefta	1	
			Concentration (µg/ml)										
		1000	500	250	125	1000	500	250	125	1000	500	250	125
	25 μl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl
S. aureus	0 mm	12	10	9	8	12	10	9	8	12	11	9	8
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
B. subtilis	0 mm	12	11	9	8	12	11	10	9	12	11	10	9
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
Pseudo	5 mm	11	10	9	8	12	10	9	8	12	10	9	8
aeruginos		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
а													
E. coli	16 mm	22	21	20	18	22	21	20	19	23	21	20	19
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm

Table 5 shows antibacterial activity of combination of Asparagus Racemosus extract with Erythromycin for 25 μ l .

Bacteria	Erythro µg/ml	Acetone extract + Erythro				Ethano + Erythr		ict	+	Methanol extract + Erythro				
		Concer	ntratior	n (μg/1	nl)									
		1000	500	250	125	1000	500	250	125	1000	500	250	125	
	25 µl	25µl	25µ1	25µl	25µ1	25µl	25µl	25µl	25µl	25µl	25µ1	25µ1	25µl	
S. aureus	16 mm	31	30	29	27	31	30	29	28	31	30	29	28	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
B. subtilis	22 mm	32	32	31	29	33	31	30	29	31	29	28	27	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
Pseudo	1 mm	27	26	24	22	28	27	26	25	28	27	26	25	
aeruginosa		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
E. coli	5 mm	21	20	19	18	24	23	21	19	24	23	21	20	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	

Table 6 shows antifungal activity of Asparagus Racemosus extract for 25 µl.

Bacteria	Ac	etone	extract		Etł	nanol e	extract		Methanol extract					
					Conc	entrati	on (µ§	g/ml)						
	1000	500	250	125	100 0	500	250	125	1000	500	250	125		
	25µ1	25µl	25µl	25µl	25µl	25µl	25µ1	25µl	25µl	25µ1	25µ1	25µl		
Aspergillus	14	13	12	10	13	12	11	10	14	13	12	11		
Niger	mm									mm				
Candida	13	12	11	10	14	13	12	11	15	14	13	12		
Albicum										mm				

Table 7 shows anti fungal activity of combination of Asparagus Racemosus extract andAmphoteracin B for 25 µl.

Bacteria	Ampho (µg/ml)	Ac	etone + Amp			Etl	nanol e + Ampl			Methanol extract + Ampho			
						Conc	on (µg	g/ml)					
		1000	500	250	125	100 0	500	250	125	1000	500	250	125
	100 µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl	25µl
Aspergillus Niger	16 mm	28 mm	26 mm	25 mm	23 mm	29 mm	27 mm	26 mm	24 mm	29 mm	27 mm	26 mm	25 mm
Candida Albicum	15 mm	30 mm	28 mm	26 mm	24 mm	30 mm	28 mm	26 mm	25 mm	31 mm	29 mm	27 mm	26 mm

Table 8 shows antifungal activity of combination of *Asparagus Racemosus* extract and Fluconazole for 25 µl.

Bacteria	Fluco (µg/ml)	Acetone extract				Ethanol extract				Methanol extract			
	(µ8,)	Fluco				Fluco				Fluco			
			Concentration (µg/ml)										
		1000	500	250	125	100	500	250	125	100	500	250	125
						0				0			
	100 µl	25µl	25µl	25µl	25µ1	25µl	25µl	25µ1	25µl	25µl	25µ1	25µl	25µl
Aspergillus	2 mm	12	11	10	9	15	13	12	10	15	14	13	11
Niger		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
Candida	0 mm	12 11 10 8				14	12	10	9	14	12	10	9
Albicum		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm

Discussion

Table A showed qualitative phytochemical analysis of *Asparagus Racemosus*. Results showed that Tannins, Saponins, Phenolics, Steroids are present while Alkaloids and glycosides are absent in plant extracts. Here methanol, ethanol and acetone extracts used.

Table 1 showed antimicrobial activity of *Asparagus Racemosus* extract for 25µl. Methanol and ethanol extract has little more value of zone of inhibition observed compare to ethanol extract. At higher concentration value of zone of inhibition found little more but as concentration decreased value of zone of inhibition decreased.

Table 2 showed antimicrobial activity of combination Asparagus Racemosus extract with amoxicillin for 25μ l. Value of zone of inhibitions are indicated more compare to pure amoxicillin against all mentioned bacterial culture. Combination showed synergic effect and it is more powerful compare to pure antibiotic.

Table 3 showed antimicrobial activity of combination of Asparagus Racemosus extract with Ciprofloxacin for 25 μ l. Pure Ciprofloxacin have zone of inhibition 24mm against S.aureus while combination showed 36mm, 35mm, 34mm and 32mm for 1000 μ g/ml, 500 μ g/ml, 250 μ g/ml, 125 μ g/ml respectively for methanol extract. Further against E.coli good synergic effect observed.

Table 4 showed antimicrobial activity of combination of Asparagus Racemosus extract with Ceftadizime for 25µl. Methanol, ethanol and acetone extract showed good antagonistic effect against different bacterial.

Table 5 showed antimicrobial activity of combination of Asparagus Racemosus extract with Erythromicin for 25 μ l. Results showd that all three extracts showed synergic effect at all conctrations. All have strong value of zone of inhibition against all for bacterial cultures.

Table 6 showed antifungal activity of Asperagus Racemosus extract for 25µl. All extract showed good resistance against A.niger and C. albicum. Methanol extract and ethanol extract showed good resistive properties.

Table 7 showed antifungal activity of combination of Asperagus Racemosus extract with Amphoteracin B for 25 μ l. Methanol, ethanol and acetone extract showed good synergic effect against A.niger and C.Albicum.

Table 8 showed antifungal activity of combination of Asperagus Racemosus extract with Fluconazole for 25 μ l. Methanol extract has good resistance potential compare to acetone extract. Value of zone of inhibition for methanol extract are found15mm, 14mm, 13mm and 11mm against A.niger.

4. CONCLUSION

Plant extracts have showed effective antimicrobial activity against bacterial various culture. To decrease side effect of antibiotics and to increase sensitivity of plant extract, combination of Herbal extract and antibiotics used. Day by day bacteria regaining antibody against traditional antibiotics and gaining strength. To stop their regenerating power, combination of plant extracts and antibiotics provide one of the best results in such direction. If nontoxic plant extracts have been taken in suitable doses, it may prove best supplementary remedies patient.

This is in vitro study and such combination must be followed by toxicity test and in vivo tests to determine its therapeutic application

REFERENCES

- 1. Susan G. Wynn; Barbara Fougère . Veterinary Herbal Medicine. Elsevier Health Sciences. p. 60. ISBN 0323029981, 2007.
- Aggarwal BB, Sundaram C, Malani N, Ichikawa H. "Curcumin: the Indian solid gold". Adv. Exp. Med. Biol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY. 595: 1–75. doi:10.1007/978-0-387-46401-5_1. ISBN 978-0-387-46400-8. PMID 17569205, 2007.
- 3. Sumner, Judith . The Natural History of Medicinal Plants. Timber Press. p. 17. ISBN 0-88192-483-0, 2000.
- Girish Dwivedi, Shridhar Dwivedi. History of Medicine: Sushruta the Clinician Teacher par Excellence (PDF). National Informatics Centre. Retrieved 2008-10-08, 2007.
- 5. Wells, John C. Longman Pronunciation Dictionary. London: Pearson Longman, 2009.
- 6. Meulenbeld, Gerrit Jan "Introduction". A History of Indian Medical Literature. Groningen: Egbert Forsten. ISBN 9069801248. 1999
- 7 Smith, Frederick M.; Wujastyk, Dagmar . "Introduction". In Smith, Frederick M.; Wujastyk, Dagmar. Modern and Global Ayurveda: Pluralism and Paradigms. New York, NY: SUNY Press. pp. 1–28. ISBN 9780791478165. OCLC 244771011, 2008.
- 8 "A Closer Look at Ayurvedic Medicine". Focus on Complementary and Alternative Medicine. Bethesda, Maryland: National Center for Complementary and Integrative Health (NCCIH). US National Institutes of Health (NIH). 12 (4). Fall 2005 – Winter 2006. Archived from the original on 2006.
- Populorum, Michael Alexander . Trends und Beschäftigungsfelder im Gesundheits- und Wellness-Tourismus: Berufsentwicklung, Kompetenzprofile und Qualifizierungsbedarf in wellness-bezogenen Freizeit- und Gesundheitsberufen (in German). LIT Verlag Münster. ISBN 9783825813680, 2008.
- Robert Freeman (February 26, 1998). "LILIACEAE Famine Foods". Centre for New Crops and Plant Products, Department of Horticulture & Landscape Architecture. Purdue University. Retrieved April 25, 2009.

- Asparagus racemosus--an update. [Review] [28 refs] Goyal RK. Singh J. Lal H. Indian Journal of Medical Sciences. 57(9):408-14, 2003 Sep.
- Alok, Shashi; Jain, Sanjay Kumar; Verma, Amita; Kumar, Mayank; Mahor, Alok; Sabharwal, Monika (2013-06-01). "Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review". Asian Pacific Journal of Tropical Disease. 3 (3): 242– 251. doi:10.1016/S2222-1808(13)60049-3. ISSN 2222-1808. 2013
- 13. www.en.wikipedia.org/wiki/Asparagus_racemosus
- The Ley Group: Combinatorial Chemistry and total synthesis of natural products Archived May 25, 2012, at the Wayback Machine.
- 15. Structure of Asparagamine A (I), a Novel Polycyclic Alkaloid from Asparagus racemosus
- Total Synthesis Of The Antitumor Agent Asparagamine A retrieved 11-02-2011 Archived April 25, 2012, at the Wayback Machine.
- Steroidal saponins from Asparagus racemosus. Sharma U. Saini R. Kumar N. Singh B. Chemical & Pharmaceutical Bulletin. 57(8):890-3, 2009 Aug.
- Steroidal saponins from the roots of Asparagus racemosus. Hayes PY. Jahidin AH. Lehmann R. Penman K. Kitching W. De Voss JJ. Phytochemistry. 69(3):796-804, 2008 Feb.