
T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

1 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

Fault Tolerant on the Grid using Distributed

Data Mining Services

T. HEMALATHA
M.Tech. Student,

Department of Computer Science & Engineering

Sri Venkateswara University College of Engineering

Tirupati, India

DR. CH. D. V. SUBBA RAO
Professor,

Department of Computer Science & Engineering

Sri Venkateswara University College of Engineering

Tirupati, India

Abstract:

Fault tolerance is an important issue in service-oriented architectures like Grid and Cloud systems,

where many and heterogeneous machines are used. Fault Tolerance is a non-functional

requirement that requires a system to continue to operate, even in the presence of faults.In this

work we present a flexible fault tolerant which extends the service –oriented architecture for

Distributed Data Mining services on Grid for all the machines (primaries and replica), in order to

have each machine both serving client requests and acting as backup for the other machines.

Where as in previously a mechanism for handling machine failures in a Grid environment is

proposed. By this the users can achieve failure recovery whenever a crash can occur on a Grid

node involved in the computation.

Keywords: Distributed Data Mining, Fault Tolerance, Grid Computing, Service-oriented

Architecture

1. Introduction

Grid computing differs from conventional distributed computing because it focuses on large-scale

resource shar-ing, offering innovative applications, and, in some cases, it is geared toward high-

performance systems Grid is a basic infrastructure of national high performance computing and

information service, it targets on the integration and interconnection of many kinds of high

performance computers, data servers, large-scale storage systems and visualize systems which are

physical distributed and heterogeneous. The driving Grid applications are traditional high-

performance applications, such as high-energy particle physics, astronomy and environmental

modeling, in which experimental devices create large quantities of data that require scientific

analysis. For these reasons, Grids must offer effective support to the implementation and use of

data mining and knowledge discovery systems. To achieve such a goal, several distributed data

mining systems exploiting the Grid infrastructure has been designed a performed by the services

on the worker nodes. A resource is associated to each service: the GlobalModel Resource to

the GlobalMiner-WS and the LocalModel Resource to the LocalMiner-WS. Such resources

are used to store the state of the services, in this case represented by the computed models

(globally and locally, respectively). The services development can be done by using the Java

WSRF library provided by the WS-Core, a component of the Globus Toolkit 4 .and

implemented [14], [12], [8], [2]. In a previous work [4] we present a flexible failure handling

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

2 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

frame-work which extends that proposed in [3], addressing the requirements for fault tolerance in

the Grid. The framework allows users to achieve failure recovery whenever a crash can occur on a

Grid node involved in the computation.

In computer science applications, a general problem to take into account is machine failure due to

faults in some component, such as a processor, memory, device, cable, or software. A fault is a

malfunction, possibly caused by a design error, a manufacturing error, a programming error,

physical damage, deterioration in the course of time, and many other causes. Not all faults lead

(immediately) to system failures, but they can do. In particular, this aspect becomes relevant in a

scenario, like the Grid, where many and heterogenous machines are involved. Developing, de-

ploying, and running applications on a environment poses significant challenges due to the diverse

failures and error conditions encountered during execution. As observed in [10], although the mean

time to failure of any entity in a computational Grid is high, the large number of entities in a Grid

(hardware, network, software, grid middleware, core services, etc.) means that a Grid can fail

frequently. For example, in [13], the authors studied the failure data from several high performance

computing systems operated by Los Alamos National Laboratory (LANL) over nine years.

Although failure rates per processor varied from 0.1 to 3 failures per processor per year, systems

with 4096 processors averaged as many as 3 failures per day. Thus, although the number of failures

per processor is relatively low, the aggregate reliability of a system clearly deteriorates as the

number of processors is increased. So, the reliability of a computational Grid is a real problem to

deal with.

In this work we present a flexible fault tolerant which extends the service –oriented architecture for

Distributed Data Mining services on Grid for all the machines (primaries and replica), in order to

have each machine both serving client requests and acting as backup for the other machines In the

following we describe all the steps composing the whole process. Let us suppose that a client

wants to execute a distributed mining algorithm on a dataset D, which is partitioned in N

partitions, {D1, ..., DN}, each one stored on one of the nodes {Node1, ..., NodeN}. A

request to the framework of performing a mining process can be labeled in three different main

phases, each one composed of various steps, as described in the following.

The rest of the paper is organized as follows. Section II describes the original framework that

supports no fault tolerant functionalities. Section III describes a fault tolerant framework for

distributed data mining, as extension of that proposed in [4]. Section IV gives some concluding

remarks.

2. Background: A Service Oriented Architecture for Distributed Data Mining On The Grid

Typically in Distributed Data Mining (DDM) data sets are stored in local databases or file

systems, hosted by local computers/repositories, which are connected through a computer

network. One of the most common DDM approaches includes the analysis of the local data

sets at each site, inferring local models or statistics. Then, the locally discovered knowledge

is usually transmitted to a merger (or central) site, where the integration/refinement of the

distributed local models is performed. Such two steps can be re-executed, until a convergence

condition has been reached. Examples of solutions adhering to this design pattern fall in

various categories, i.e. clustering ([3], [8]), classification ([7]), association rule and frequent

item sets mining ([7]), ensemble learning ([11]), collective data mining ([8]) and meta-

learning ([9]). In order to provide a service oriented architecture for the execution of distributed

data mining algorithms on the Grid, in [2] we have designed the Grid service architectural model

shown in Figure 1. It is composed of two Grid Services: the GlobalMiner-WS and the

LocalMiner-WS.

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

3 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

The overall architecture resembles the aforementioned DDM schema through an entity acting as

coordinator (the GlobalMiner-WS)) and a certain number of entities acting as miners

(LocalMiner-WS) on local sites. Thus, it is a master/worker architecture, in which the service

on the master node arranges the operations performed by the services on the worker nodes. A

resource is associated to each service: the GlobalModel Resource to the GlobalMiner-WS and

the LocalModel Resource to the LocalMiner-WS. Such resources are used to store the state

of the services, in this case represented by the computed models (globally and locally,

respectively). The services development has been done by using the Java WSRF library

provided by the WS-Core, a component of the Globus Toolkit 4 .

In the following we describe all the steps composing the whole process. Let us suppose that a

client wants to execute a distributed mining algorithm on a dataset D, which is partitioned

in N partitions, {D1, ..., DN}, each one stored on one of the nodes {Node1, ..., NodeN}. A

request to the framework of performing a mining process can be labeled in three different main

phases, each one composed of various steps, as described in the following.

From the following Fig.: 1 we can see that how a job can be submitted and executed. First the client

submits the job to the Global Miner-WS and immediately the Global Miner-WS searches for an

appropriate resource (Global Model Resource) for storage of the job. Then the Global Model takes

the help of Local Miner-WS for the execution of the job and for finding out the faults in the

machine. Finally the Global Model Resource submits the job to the Local Miner-WS. Once if the

Fig. 1. General Grid Service Architecture for a machine

Job is submitted to the Local Miner-WS then the Global Model Resource it has no control over the

job processes. Now the Local Miner-WS starts the required process of the job. After execution of

the job. The results of the executed job are stored in the Local Model Resource, when once the

results are collected then the Local Model Resource submits the job results to the Global Model

Resource. At last finally the Global Model Resource will subm it the job results to the client.

2.1 Proposed Architecture

In the proposed architecture[Gridbus [6], it is composed of two Grid Services : the Grid Service

Broker and the Grid Service Provider.This architecture is similar to the Grid Service Architecture.

To the proposed architecture we use the Peer-To-Peer Computing mechanism for an efficient

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

4 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

exploitation of all the machines (primaries and replica), in order to have each machine both serving

as client requests and acting as backup for the other machines.

Fig. 2. Proposed architecture of P2P computing

From the Fig.:2 we can see the proposed architecture, how it process. The client submits the job to

the Grid Service Broker and then the Grid resource broker performs resource discovery based on

user-defined characteristics, using the Grid information service(step 1). The broker identifies the

list of data sources or replicas and selects the optimal ones(step 2) . The broker ensures that the

user has the necessary credit or authorized share to utilise resources(step 3) . The broker scheduler

maps and deploys data analysis jobs on resources that meet user quality-of-service

requirements(step 4) . The broker agent on a resource executes the job and returns results(step 5) .

The broker collects the results and passes them to the user(step 6).

Fig. 3. Proposed Architecture

2.2 Unreliability Aspects

The system described in the Section II-A presents no strategy to tolerate faults. In particular,

crashes can occur both on the Grid Service Broker and on the Grid Service Provider, so there are

two points where the fault tolerance has to be handled. The first service acts both as the coordinator

of the system and as collector of the results delivered by the local services; for such a reason, any

failure occurring on it stops the whole computation. The second services, acting as workers in the

architecture, execute local computations. Since the global model can be built only if all the local

models are delivered, any crash on a local site (and consequently no deliver of its local model to the

central site) prevents the Grid Service Broker to build a global model. In the rest of the paper we

address such issues and propose a solution to deal with them.

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

5 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

2.2.1 To overcome these two reasons or faults

Many fault-tolerance systems have been proposed in literature. Most of them exploit the two well-

known classical Primary-Backup and Active-Replication approaches. In the following, we will give

a brief description of such two techniques. Then, we will cite some systems devoted at handling

fault tolerance in Grids

The Primary-backup method is based on a primary server and a given number of backup servers.

The essential idea is that, at any instant, only the primary is running and does all the work. If the

primary fails, a cut over from the primary to the backup is handled by a suitable protocol (that in

most cases does not involve the client). At this point, the backup acts as new primary (and new

backup should be activated).

Active replication, sometimes referred as state machine approach, is a well-known technique for

providing fault tolerance using physical redundancy. The strategy is based on independent

replicated server (replicas). The client sends the invocation to all the replicas, which execute the

computation and send the responses. In other words, the computation is made by more servers are

executing exactly the same work and are able to finalize the computation and reply to the client.

3. A Fault-Tolerant Framework

This section presents the extension of the framework described in the Section II with the goal of

making it fault-tolerant. As cited in the Section II-B, we deal with two-level fault tolerant

strategies: the first one applied to the Grid Service Broker level, the second one to the Grid Service

Provider level.

3.1 Fault tolerance on the Grid Service Broker

The fault-tolerance on the Grid Service Broker has been designed by adopting and implementing

the general primary-backup strategy. The proposed fault-tolerant framework supposes the presence

of a set of Grid Service Broker replica, whose just one is the primary at any time. The others are

named backups. The primary-backup strategy [7] contemplates the following general steps:

1. The client sends the invocation to the Grid Service Broker.

2. The primary receives the invocation and asks for local computations; as soon as such

computation results are returned and the Global Model has been re-computed, the primary

sends a model-update message to the backups. The primary sends a model-update message to

the backups.

3. If the primary crashes during step 2, a new primary is elected among the replicas, and it

becomes the new primary of the system, taking care of the computation.

4. Once the primary has received a reply of the state update (step 2) from all backups, the

response is sent to the client.

Three delicate phases, as in any implementation of a primary-backup mechanism [3], should be

analyzed in detail:

• Checkpointing or transfer of application state. The primary periodically needs to send the

change in the Global Model (its state) to the backups; it basically consists of storing a snapshot

of the current application state. In particular, the consistency has to be guaranteed among the

backup states, i.e., the primary can continue its work (or reply to the client) only when it is

known that the backups have applied the state change.

• Failure detection. Crashes of the primary node can be detected by a periodic message, i.e.

heartbeat that is sent to the backup; if no messages are sent for a given time, then this can be an

indication of a failure on the primary node.

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

6 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

• Recovery phase, or switching to a new primary. Originally, one of the service instances is

designated as a primary and others as backups. After a failure of the primary , the backups

agree on a new primary that restarts the execution from the last Checkpoint state. Hereafter, all

future requests are directed to and processed by it.

Fig. 5. Fault Tolerant Architecture

Figure 3 shows the system with no faults and process is going on properly with the backups

consisting internally in it by sending the heart beat message to the Grid Service Broker. . The client

submits the job to the Grid Service Broker and then the Grid resource broker performs resource

discovery based on user-defined characteristics, using the Grid information service(step 1). The

broker identifies the list of data sources or replicas and selects the optimal ones(step 2) . The

broker ensures that the user has the necessary credit or authorized share to utilise resources(step 3) .

The broker scheduler maps and deploys data analysis jobs on resources that meet user quality-of-

service requirements(step 4) . The broker agent on a resource executes the job and returns

results(step 5) . The broker collects the results and passes them to the user(step 6).

Fig. 6. Architecture with backup

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

7 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

Fig. 4. Fault Tolerant Architecture with backup

Figure 4 shows an efficient exploitation of all the machines (primaries and replica), in order to

have each machine both serving client requests and acting as backup for other machines. Now, let

us make some considerations on the protocol above described, giving some more details on it:

 Even though state updates are asynchronous events, they are sent from the primary to the

backup by the synchronous updateModel operation; this guarantees that the primary has a

control on the reception of the updates by the backups. In fact, for consistency reasons, it is

important that the computation can go ahead only if all the backups have stored the last

checkpointed global model.

 Whenever a role of primary is assigned to a backup, it re-starts the computation from the

last committed GlobalModel. Since it has no control on the operations performed by the old

primary after the last checkpoint and before the failure, the new primary performs the

following choices: if the last checkpointed global model is the final model, it is just

delivered to the client; otherwise, if it needs more processing, the new primary submits to

the local services the task to be performed (probably, the same submitted by the old primary

before its failure).

• The protocol guarantees hiding of any failure to the client, in fact no interaction is requested

during all the process (even if a failure occurs).

• The protocol does not consider the failures of a backup service before its activation as primary;

the only new issue are the detection of backup failures and the integration of new backup into

the system. These steps would not interfere with the operation of the surviving system

components and its implementation is not complex.

4. Conclusions and Future Work

Owing to the heterogeneity and complexity of the Grids, executing long distributed data

mining tasks in a reliable way is a challenge. We introduced an efficient exploitation of all

the machines (primaries and replica), in order to have each machine both serving client

requests and acting as backup for the other machines.

As future we plan to introduce some mechanisms for load balancing which can be used in order to

have a load-aware assignment of the mining tasks.

T. Hemalatha et al. / International Journal of Research in Modern
Engineering and Emerging Technology

 Vol. 1, Issue: 9, Oct.-Nov.-Dec.: 2013
 (IJRMEET) ISSN: 2320-6586

8 Online International, Reviewed & Indexed Monthly Journal www.raijmr.com
 RET Academy for International Journals of Multidisciplinary Research (RAIJMR)

References

1. Alsairafi, S. F. S. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo, D. Kalaitzopoulos, M.

Osmond, A. Rowe, J. Syed and P. Wendel .(2003).The Design of Discovery Net:

Towards Open Grid Services for Knowledge Discovery. International Journal of High

Performance Computing Applications, vol. 17, no. 3, pp. 297-315.

2. Beguelin, A. E. Seligman and P. Stephan (1997).”Application level fault tolerance in

heterogeneous networks of workstations”. Journal of Parallel and Distributed

Computing, vol. 43, no. 2, pp. 147-155.

3. Cannataro, M. and D. Talia (2003). The Knowledge Grid. Communi-tations of the ACM, vol.

46, no. 1, pp. 89-93.

4. Cesario, E. and D. Talia (2008).”Distributed Data Mining Models as Services on the Grid”. In

Proc. of 10
th

 International Workshop on High Performance Data Mining (HPDM 2008),

in conjunction with ICDM’08, IEEE, 2008, pp. 409-495.

5. Cesario, E. and D. Talia. “ A failure Handling Framework for Distributed Data Mining

Services on Grid”

6. Foster, I. C. Kesselman, J. Nick and S. Tuecke (2003). The Phys-iology of the Grid. In Grid

Computing: Making the Global Infrastructure a Reality, Berman F., Fox G. and Hey A.,

Eds., Wiley. pp. 217-249.

7. Gridbus Toolkit.

8. Guerraoui, R. and A. Schiper.(1996).”Fault-Tolerance by Replication in Distributed Systems”.

In Proc. of Conference on Reliable Software Technologies. pp. 38-57.

9. J. Hofer and P. Brezany. “DIGIT: Distributed Classifier Construction in the Grid Data Mining

Framework GridMiner-Core”. In Proc.Workshop on Data Mining and the Grid,2004.

10. Johnson, E. and H. Kargupta. Collective(2005). Hierarchical Cluster-ing from Distributed,

Heterogeneous Data. In LargeScale Par-allel KDD Systems, Zaki M. and Ho C., Eds.,

SpringerVerlag. pp. 217-249.

11. Kandaswamy, G. A. Mandal and D. A. Reed (2008).”Fault Toler-ance and Recovery of

Scientific Workflows on Computational Grids”. In Proc. of the 2008 Eighth IEEE

International Sym-posium on Cluster Computing and the Grid (CCGrid) pp. 777-782.

12. Prodromidis, A. L. P. K. Chan and S. J. Stolfo (200)0. Meta-learning in Distributed Data

Mining Systems: Issues and Approaches. In Advances in Distributed and Parallel

Knowledge Discovery, Kargupta H. and Chan P., Eds., AAAI/MIT Press: Menlo Park,

pp. 81-87.

13. Schroeder, B. and G. A. Gibson (2006).”A large-scale study of failures in high-performance

computing systems”. In Proc. of the International Conference on Dependable Systems

and Networks.

14. Talia, D. P. Trunfio and O. Verta (2005). ”Weka4WS: A WSRF-Enabled Weka Toolkit for

Distributed Data Mining on Grids”. In Proc. 9th European Conference on Principles and

Practice of Knowledge Discovery in Databases.

